• Analytes Determined at Celignis
    Moisture

The Moisture content is considered to be the mass proportion of a sample that is lost when the sample is dried overnight at 105 degrees celsius. Celignis always expresses the Moisture content on a wet-basis.

Click here for more information on moisture content and its relevance in the processing of biomass.


Click here to place an order for determining Moisture.

Request a QuoteMoisture Content

Analysis Packages for Moisture

The Celignis Analysis Package(s) that determine this constituent are listed below:

Analytical Procedure for Moisture


☑ Step 1: Moisture Determination (for a wet sample)

Equipment Used for Moisture Analysis

Publications on Moisture By The Celignis Team

Hayes, D. J. M., Hayes, M. H. B., Leahy, J. J. (2015) Analysis of the lignocellulosic components of peat samples with development of near infrared spectroscopy models for rapid quantitative predictions, Fuel 150: 261-268

Link

Analytical data and quantitative near infrared (NIR) spectroscopy models for various lignocellulosic components (including Klason lignin and the constituent sugars glucose, xylose, mannose, arabinose, galactose, and rhamnose), moisture, and ash were obtained for 53 peat samples. These included samples with high, medium, and low degrees of humification. Klason lignin was the main constituent and was greatest in the samples classified as being highly humified, with structural sugars the lowest in this class. The total sugars contents of all samples were considered to be insufficient to allow for their use in biorefining hydrolysis processes for the production of chemicals and biofuels. NIR models were developed for spectral datasets obtained from the samples in their unprocessed (wet), dry and unground, and dry and ground states. Typically the most accurate models were based on the spectra of dry and ground samples. However the NIR models for the wet samples still offered reasonable predictive capabilities. All models were suitable at least for sample screening, with the models for total sugars, glucose, xylose, galactose, and moisture suitable for quantitative analyses.

Hayes, D. J. M. (2012) Development of near infrared spectroscopy models for the quantitative prediction of the lignocellulosic components of wet Miscanthus samples, Bioresource Technology 119: 393-405

Link

Miscanthus samples were scanned over the visible and near infrared wavelengths at several stages of processing (wet-chopped, air-dried, dried and ground, and dried and sieved). Models were developed to predict lignocellulosic and elemental constituents based on these spectra. The dry and sieved scans gave the most accurate models; however the wet-chopped models for glucose, xylose, and Klason lignin provided excellent accuracies with root mean square error of predictions of 1.27%, 0.54%, and 0.93%, respectively. These models can be suitable for most applications. The wet models for arabinose, Klason lignin, acid soluble lignin, ash, extractives, rhamnose, acid insoluble residue, and nitrogen tended to have lower R(2) values (0.80+) for the validation sets and the wet models for galactose, mannose, and acid insoluble ash were less accurate, only having value for rough sample screening. This research shows the potential for online analysis at biorefineries for the major lignocellulosic constituents of interest.

Hayes, D. J. M. (2011) Analysis of Lignocellulosic Feedstocks for Biorefineries with a Focus on The Development of Near Infrared Spectroscopy as a Primary Analytical Tool, PhD Thesis832 pages (over 2 volumes)

Download

The processing of lignocellulosic materials in modern biorefineries will allow for the production of transport fuels and platform chemicals that could replace petroleum-derived products. However, there is a critical lack of relevant detailed compositional information regarding feedstocks relevant to Ireland and Irish conditions. This research has involved the collection, preparation, and the analysis, with a high level of precision and accuracy, of a large number of biomass samples from the waste and agricultural sectors. Not all of the waste materials analysed are considered suitable for biorefining; for example the total sugar contents of spent mushroom composts are too low. However, the waste paper/cardboard that is currently exported from Ireland has a chemical composition that could result in high biorefinery yields and so could make a significant contribution to Ireland’s biofuel demands.

Miscanthus was focussed on as a major agricultural feedstock. A large number of plants have been sampled over the course of the harvest window (October to April) from several sites. These have been separated into their anatomical fractions and analysed. This has allowed observations to be made regarding the compositional trends observed within plants, between plants, and between harvest dates. Projections are made regarding the extents to which potential chemical yields may vary. For the DIBANET hydrolysis process that is being developed at the University of Limerick, per hectare yields of levulinic acid from Miscanthus could be 20% greater when harvested early compared with a late harvest.

The wet-chemical analysis of biomass is time-consuming. Near infrared spectroscopy (NIRS) has been developed as a rapid primary analytical tool with separate quantitative models developed for the important constituents of Miscanthus, peat, and (Australian) sugarcane bagasse. The work has demonstrated that accurate models are possible, not only for dry homogenous samples, but also for wet heterogeneous samples. For glucose (cellulose) the root mean square error of prediction (RMSEP) for wet samples is 1.24% and the R2 for the validation set ( ) is 0.931. High accuracies are even possible for minor analytes; e.g. for the rhamnose content of wet Miscanthus samples the RMSEP is 0.03% and the is 0.845. Accurate models have also been developed for pre-treated Miscanthus samples and are discussed. In addition, qualitative models have been developed. These allow for samples to be discriminated for on the basis of plant fraction, plant variety (giganteus/non-giganteus), harvest-period (early/late), and stand-age (one-year/older).

Quantitative NIRS models have also been developed for peat, although the heterogeneity of this feedstock means that the accuracies tend to be lower than for Miscanthus. The development of models for sugarcane bagasse has been hindered, in some cases, by the limited chemical variability between the samples in the calibration set. Good models are possible for the glucose and total sugars content, but the accuracy of other models is poorer. NIRS spectra of Brazilian bagasse samples have been projected onto these models, and onto those developed for Miscanthus, and the Miscanthus models appear to provide a better fit than the Australian bagasse models.

Additional Material

We can determine the Moisture content of biomass, click here to learn more about our various biomass analysis methods.



...