• Technoeconomic Analysis (TEA)
    of Bioprocesses
    At Celignis Bioprocess

The Importance of Technoeconomic Analyses of Bioprocesses

For the successful commercialisation of a developed technology, lab-scale data provide a valuable starting point along the technology readiness level (TRL) spectrum. At Celignis, we conduct technical modelling and engineering design of pilot and industrial scale processes using our experimental data supplemented with data from other reliable sources and standards.

The rigorous simulation provides reliable mass and energy balance data which constitutes the foundation for equipment design, sizing and specification and utility demand estimations.


The facility design information enables the estimation of the capital (CAPEX) and operating (OPEX) expenditures of the proposed production system using reliable costing models. This is followed by a thorough evaluation of the economic performance of the process. All the technical and economic hotspots in the process flow and value chain are identified and modulated to improve the robustness of the production system.

A thorough techno-economic evaluation (TEA) provides more clarity which guides decision-making especially in the case of a significant financial commitment like the establishment of a commercial-scale bioprocessing facility.

Considering the low TRL of many emerging and developed bioprocess technologies, TEA stands as a valuable tool to investigate the promising potentials of these technologies in a more detailed design on a large scale before any major financial commitment is made. Our team of TEA experts are well equipped to evaluate the scale up and economic potential of various feedstock conversion technologies and product systems to provide clients and stakeholders with the vital data necessary to inform their decision making and resource allocation in respect of a technology or product of interest.



Our Technoeconomic Analysis Experts

Oscar has conducted several economic evaluations on several bioprocess technologies and product systems. During his PhD, he conducted comparative technoeconomic studies on the biorefinery scenarios for production of prebiotics, biofuels (e.g. butanol, ethanol) and bioproducts (e.g. xylitol). He has also worked with industrial partners to estimate the capital investment requirement and also assess the economic feasibility of biobased products from seaweed at a pilot scale.

Oscar has also good experience in the development of advanced and detailed conceptual process flow diagrams from the lab-scale process, highlighting scale-up challenges and the process and engineering requirements for every unit operation in the process flow. With his proficient understanding of biological, chemical and physical systems, he has developed process simulations for several biorefinery scenarios using the appropriate modelling software. These simulations closely mimic the real life manifestation of the industrial process which is beneficial for R&D, mass and energy balance, equipment design and operation of the process or industrial plant. The simulation development significantly cuts down on unnecessary laboratory experiments, pilot scale runs and facilitates design by a convenient comparison of various process alternatives.

Oscar is currently leading the TEA tasks of the multinational EnXylaScope project and has also undertaken TEA projects for a number of Celignis's clients, ranging from SMEs to large multinational organisations.



A serial innovator with extensive knowledge and experience in enzymes, microbes, and fermentation. Lalitha has a PhD in life sciences (Bioprocessing and Biotechnology) from Cochin University of Science and Technology (CUSAT), India (2015). In her PhD she discovered a novel natural butanol fermenter that does not form acetone and received a business plan award from CSIR, India (2011). She also also developed strategies to co-produce solvents and organic acids and was a visiting researcher in the University of Naples for three months under a Marie-Curie fellowship grant.



How we Can Help with TEA of Bioprocesses

Evaluation of Existing Process

Our techno-economic experts can work with you to evaluate the economic prospects of your technology or feedstock. We apply accurate and realistic costing models to determine the CAPEX and OPEX of simulated and pilot scale processes which are then used to determine key economic indicators such as IRR, NPV and payback periods.

We provide comprehensive, objective and transparent results to help you obtain a good understanding of your process and its value chain as well as inform your budget and investment resource allocation. Our sensitivity analysis exposes the hotspots in the process flow as well as the main influencing parameters.

As Part of Bioprocess Development

We can also undertake technoeconomic analyses as part of our bioprocess development projects. Ideally, we like to undertake TEA work at multiple stages of the proejct, in order that the development of the bioprocess is always under the context of a commercially-viable approach, followed a final more in-depth TEA at the last stage of the project, using the results under optimised conditions and, where possible, outputs from experimental runs under higher TRLs.

Our TEA work can consider the whole bioprocess, even if our bioprocess development activities are only focused on improving one particular aspect of the whole value chain, or can focus only on specific process nodes. Due to the interdependencies of many stages of bioprocesses, and also due to the opportunities for process integrations regarding the use of energy and/or infrastructure, we normally recommend that our TEA work covers the whole value chain rather than a single process node. An alternative is that the TEA covers the process node being optimised in the bioprocess development project as well as the implications on any downstream processing steps, but does not cover parts of the bioprocess prior to that node.


Bioprocess TEA Projects - Case Studies

Biogas from Industry Waste

Celignis was approached by a large beverage production company to determine the feasibility of utilising their waste streams for biogas production and to determine the additional feedstock requirement to meet the full plant energy demand.

Celignis performed the required biological and chemical analysis of the facility's waste streams and developed a spreadsheet tool for feedstock mixtures design to allow the conversion of the sugar and acid rich waste stream to biogas and to meet the energy requirements of the company.

The tool considered seasonality of the locally-available feedstock that could be used as co-feed with the sugar rich waste streams. Also considered, while designing the feedstock mixtures, were Renewable Energy Directive (RED) II GHG emission targets and waste to energy crops ratio.

Greenhouse gas (GHG) emission reductions and carbon dioxide that could be captured and the total revenue generation from biogas and CO2 were also estimated. The tool allowed the company to make informed decisions on the project and understand the biogas potential and feedstock requirements to meet the target power requirement.

Fermentation of Industry Side-Streams

Celignis undertook a lab-scale bioprocess development project focused on the hydrolysis of cellulose-containing side-streams from an existing industrial process, followed by the fermentation of the liberated sugars into a variety of products, including ethanol and organic acids.

Following the completion of our lab-scale work, we worked on a technoeconomic analysis of the bioprocess, considering several different scenarios. These included the scale-up of the process as-developed as well as the modelling of the process after several modifications (e.g. simultaneous saccharification and fermentation (SSF) rather than separate hyrolysis and fermentation ( SHF)).

The outputs of this TEA informed a follow-on bioprocess development project, incorporating the changes deemed to give greatest impact to the process in terms of commercial and environmental sustainability.

Publications on Technoeconomic Analysis By The Celignis Team

Swart, L. J., Bedzo, O. K. K., van Rensburg, E., Gorgens, J. F. (2022) Pilot-scale xylooligosaccharide production through steam explosion of screw press-dried brewers spent grains, Biomass Conversion and Biorefinery 12: 1295-1309

Link

Brewers spent grains (BSGs) represent the largest quantity of solid waste from brewing, while xylooligosaccharides (XOS) produced from BSG show promising applications in food, beverage and health products. Production of XOS from a Weiss and malt BSG was scaled-up in steam explosion hydrothermal treatment using process conditions from bench-scale liquid hot water optimisations in stirred batch reactors. Three levels of moisture (15, 25 and 32% dry matter) achieved by screw press dewatering were evaluated by varying the treatment temperatures and times. Results show the highest XOS yields (73.1%) were obtained, for both BSGs, at process condition selected (180 C, 10 min) with 25% initial dry matter content. These yields were higher than reported bench-scale optimisations (61%), but obtained using 60% less water; hence, initial dry matter content was an important variable affecting XOS yield. The pilot-scale steam explosion results provide a departing point for a cost-effective commercial production of XOS from BSG.

Swart, L. J., Bedzo, O. K. K., van Rensburg, E., Gorgens, J. F. (2021) Intensification of Xylo-oligosaccharides Production by Hydrothermal Treatment of Brewers Spent Grains: The Use of Extremely Low Acid Catalyst for Reduction of Degradation Products Associated with High Solid Loading, Applied Biochemistry and Biotechnology 193: 1979-2003

Link

Brewers' spent grains (BSG) make up to 85% of a brewery's solid waste, and is either sent to landfill or sold as cheap animal feed supplement. Xylo-oligosaccharides (XOS) obtained from BSG are antioxidants and prebiotics that can be used in food formulations as low-calorie sweeteners and texturisers. The effect of extremely low acid (ELA) catalysis in liquid hot water (LHW) hydrothermal treatment (HTT) was assessed using BSG with dry matter contents of 15% and 25%, achieved by dewatering using a screw press. Batch experiments at low acid loadings of 5, 12.5 and 20 mg/g dry mass and temperatures of 120, 150 and 170 C significantly affected XOS yield at both levels of dry mass considered. Maximum XOS yields of 76.4% (16.6 g/l) and 65.5% (31.7 g/l) were achieved from raw BSG and screw pressed BSG respectively, both at 170 C and using 5 mg acid/g dry mass, after 15 min and 5 min, respectively. These XOS yields were obtained with BSG containing up to 63% less water and temperatures more than 20 C lower than that reported previously. The finding confirms that ELA dosing in LHW HTT allows lowering of the required temperature that can result in a reduction of degradation products, which is especially relevant under high solid conditions. This substantial XOS production intensification through higher solid loadings in HTT not only achieved high product yield, but also provided benefits such as increased product concentrations and decreased process heat requirements.

Swart, L. J., Peterson, A. M., Bedzo, O. K. K., Gorgens, J. F. (2021) Techno-economic analysis of the valorization of brewers spent grains: production of xylitol and xylo-oligosaccharides, Journal of Chemical Technology & Biotechnology 96(6): 1632-1644

Link

BACKGROUND
Brewers spent grains (BSG) represents around 85% of a brewery's solid waste and common disposal to landfill is increasingly more difficult. Yet BSG is a food-grade by-product with potential economic valorization that can significantly improve resource efficiency and reduction in carbon emissions. This study investigated valorization of BSG through the application of novel high solids hydrothermal processing technology in a small-scale biorefinery, annexed to a brewery. It focused on three scenarios for the production of: (A) the sugar replacement xylitol; (B) prebiotic xylo-oligosaccharide (XOS); and (C) co-production of xylitol and XOS. Economic assessment was conducted by comparing the capital and operating expenditure from process simulations created in Aspen Plus. The process models developed were supplemented with experimental data to improve accuracy.
RESULTS
Internal rate of return (IRR) values obtained were greater than the hurdle rate of 9.7% for all scenarios when considering a conservative market price for xylitol and XOS as US$4500 t-1, yet dedicated production of XOS was economically more favourable with a minimum required selling price (MRSP) of US$2509 t-1 compared to US$4153 t-1 for xylitol. Additionally, the scenario for co-production of xylitol and XOS achieved the lowest MRSP of US$2182 t-1. By-products significantly contributed to 32.7%, 14.2% and 27.5% of the revenue generated in scenarios A, B and C, respectively.
CONCLUSION
These results provide a good platform from which to develop the cost-effective commercial production of XOS and xylitol from BSG.

Bedzo, O. K. K., van Rensburg, E. and Gorgens, J. F. (2021) Investigating the effect of different inulin-rich substrate preparations from Jerusalem artichoke (Helianthus tuberosus L.) tubers on efficient inulooligosaccharides production, Preparative Biochemistry and Biotechnology 51(5): 440-449

Link

Commercial production of inulooligosaccharides (IOS) relies largely on chicory roots. However, Jerusalem artichoke (JA) tubers provide a suitable alternative due to their high inulin content and low cultivation requirements. In this study, three inulin-rich substrate preparations from JA were investigated to maximize IOS production, namely powder from dried JA tuber slices (Substrate 1), solid residues after extracting protein from the JA powder (Substrate 2) and an inulin-rich fraction extracted from protein extraction residues (Substrate 3). The preferred temperature, pH and inulin substrate concentration were determined after which enzyme dosage and extraction time were optimized to maximize IOS extraction from the three substrates, using pure chicory inulin as benchmark. Under the optimal conditions, Substrate 3 resulted in the highest IOS yield of 82.3% (w/winulin). However, IOS production from the Substrate 1 proved more efficient since it renders the highest overall IOS yield (mass of IOS per mass of the starting biomass). In the case of co-production of protein and IOS from the JA tuber in a biorefinery concept, IOS production from the Substrate 2 is preferred since it reduces the inulin losses incurred during substrate preparation. For all the inulin-rich substrates studied, an enzyme dosage of 14.8 U/ginulin was found to be optimal at reaction time less than 6 h. JA tuber exhibited excellent potential for commercial production of IOS with improved yield and the possible advantage of a reduced biomass cost.

Bedzo, O. K. K., Mandegari, M. and Gorgens, J. F. (2020) Techno-economic analysis of inulooligosaccharides, protein, and biofuel co-production from Jerusalem artichoke tubers: A biorefinery approach, Biofuels Bioproducts & Biorefining-Biofpr 14(4): 776-793

Link

Jerusalem artichoke (JA) is a crop with excellent potential for application in biorefineries. It can resist drought, pests, and diseases and can thrive well in marginal lands with little fertilizer application. The JA tubers contain considerable quantities of inulin, which is suitable for the production of inulooligosaccharides (IOS), as a high-value prebiotic, dietary fiber. In this study, five JA tuber biorefinery scenarios were simulated in Aspen Plus and further evaluated by techno-economic and sensitivity analyses. Production of IOS, proteins and animal feed was studied in scenarios A and C, applying various biorefinery configurations. Scenario B explored the option of producing only IOS and the sale of residues as animal feed. Scenarios D and E investigated the economic potential of biofuel generation from residues after IOS and protein production by generation of biogas and ethanol respectively, from residues. Based on the chosen economic indicators, scenario B resulted in the lowest minimum selling price (MSP) of 3.91 US$ kg-1 (market price 5.0 US$ kg-1) with correspondingly reduced total capital investment (TCI) and total operating cost (TOC) per mass unit produced of IOS of 18.91 and 2.59 US$ kg-1 respectively, compared with other studied scenarios. Considering the set production scale, it is more profitable when the residues are sold as animal feed instead of being converted into biofuel, due to the capital-intensive nature of the biofuel production processes. The coproduction of protein had a negative impact on the economics of the process as the associated capital and operating expenditure outweighed the associated revenue.

Bedzo, O. K. K., Mandegari, M. and Gorgens, J. F. (2020) Comparison of immobilized and free enzyme systems in industrial production of short-chain fructooligosaccharides from sucrose using a techno-economic approach, Biofuels Bioproducts & Biorefining-Biofpr 14(4): 776-793

Link

Short-chain fructooligosaccharides (scFOS) are nutraceuticals with numerous applications in the food and pharmaceutical industries. The production of scFOS using immobilized biocatalysts offers some functional and technical advantages over free enzyme counterparts. To investigate the economic potential of the immobilized enzyme system relative to the free enzyme system, a techno-economic comparison was conducted on three methods of scFOS production (powder and syrup forms) at a capacity of 2000?t per annum (tpa) by enzymatic synthesis from sucrose: the free enzyme (FE), calcium alginate immobilized enzyme (CAIE), and amberlite IRA 900 immobilized enzyme (AIE) systems. These processes were simulated in Aspen Plus to obtain the mass and energy balances and to estimate the operating and capital costs, followed by economic evaluation and sensitivity analysis. Profitability analysis showed that all three systems are economically viable as their associated minimum selling prices (MSP) were well below the scFOS market price of 5 $ kg-1. However, the FE system was the most profitable with the lowest MSP of 2.61 $ kg-1 because the savings on cost as a result of enzyme immobilization could not offset the additional costs associated with immobilization. Sensitivity analysis demonstrated that total operating cost, fixed capital investment, and internal rate of return (% IRR) have the greatest effects on the MSP. Furthermore, the syrup form of scFOS production leads to 29% less MSP, compared to powder form. In addition, the studied plant capacities of 5000 and 1000?tpa showed 10% and 16% reductions on MSP respectively.

Contact Celignis Bioprocess

Feel free to get in touch with us if you have any questions about our TEA services for bioprocesses. Relevant members of the Celignis biochar team will be happy to assist. Those team members with the most experience in technoeconomic analyses are listed below.

Lalitha Gottumukkala

Founder of Celignis Bioprocess, CIO of Celignis

PhD

Has a deep understanding of all biological and chemical aspects of bioproceses. Has developed Celignis into a renowned provider of bioprocess development services to a global network of clients.

Oscar Bedzo

Bioprocess Project Manager & Technoeconomic Analysis Lead

PhD

A dynamic, purpose-driven chemical engineer with expertise in bioprocess development, process design, simulation and techno-economic analysis over several years in the bioeconomy sector.

Dan Hayes

Celignis CEO And Founder

PhD (Analytical Chemistry)

Dreamer and achiever. Took Celignis from a concept in a research project to being the bioeconomy's premier provider of analytical and bioprocessing expertise.

Other Celignis Services for Bioprocess Development

Global Recognition as Bioprocess Experts

Celignis provides valued services to over 1000 clients. We understand how the focus of bioprocess projects can differ between countries and have advised a global network of clients. We also have customs-exemptions for samples sent to us allowing us to quickly get to work no matter where our clients are based.

Further Info...




Extraction

Biomass can be rich in bioactive compounds of high value for food, feed, cosmetic, and pharmaceutical applications. We develop bespoke extraction methods suitable for your needs with high selectivity, efficiency and low environmental impact.

Further Info...




Pretreatment

The choice of pretreatment method varies with the type of biomass and the end-product requirements. At Celignis we can determine the most suitable pretreatment for your feedstock and determine the optimum conditions in lab-scale trials followed by higher TRL scale-ups.

Further Info...




Hydrolysis

For the hydrolysis of lignocellulosic biomass to monomeric sugars either chemical or biological approaches can be used. At Celignis Bioprocess we can use both methods at scales ranging from flask-level to 100-litres. We have particular expertise in the optimisation of conditions for enzymatic hydrolysis.

Further Info...




Enzymes

Enzymes are biological catalysts that have a wide variety of applicaitons in the bioeconomy, ranging from the liberation of sugars from lignocellulosic biomass to the functionalisation of biomass-derived chemicals and materials for higher-value applications. We are experts in the design and use of enzymatic approaches.

Further Info...




Fermentation

Development of fermentation processes requires knowledge of an array of important factors including: biomass, the microbes used, nutrient media, and fermentation conditions. We're experienced in many fermentations and can help you determine and optimise yields of an array of different fermentation products.

Further Info...




Downstream Processing

How the various outputs (solid and liquid) of a bioprocess are dealt with is often overlooked until later in bioprocess development, leading to excessive costs and complications. We consider and tackle these issues, and others such as product recovery, early-on as being integral to the bioprocess.

Further Info...




Lab-Scale Optimisations

We consider that optimising a bioprocess at the lab-scale is the most cost-effective approach to explore a range of different scenarios in search of optimal process conditions. Based on the outputs of these experiments we can then test the chosen set of conditions at higher TRL levels.

Further Info...




TRL Scale-Up

At our dedicated Celignis Bioprocess laboratories we have all the necessary upstream and downstream apparatus to undertake bioprocess projects up to a tehcnology readiness level (TRL) of 6, with reactor and processing capacities of up to 100 litres.

Further Info...




Biobased Chemicals

A large array of chemicals and materials are possible from biomass and wastes. These can involve chemical or biological approaches, or a combination of the two. Based on your desired end-product we can design and test the most appropriate bioprocess.

Further Info...




From Process Refinements to an Entire New Process

We work closely with you to understand your objectives and timelines. We then propose a project, usually covering a series of deliverables and stage-gates. Often our projects involve optimising conditions at the lab-scale before replicating the conditions at higher TRL levels.

Further Info...




Research Collaborations

Celignis is active in several bioprocess research projects. These include projects funded by the EU's CBE-JU, with Celignis being a Full Industry Member of the BIC. We're open to participating in future collaborative research projects where our extensive infrastructure and expertise in bioprocesses can be leveraged.

Further Info...






...