• Biomass Research Projects
    Previous Projects

Below are listed the research projects that Celignis personnel have previously been involved in.

Click here to read about all our current research projects, here to read about our current projects funded by the Circular Bioeconomy Europe Joint Undertaking (CBE-JU), here to read about our current Horizon Europe projects, and here to read about our plans for the future.



"High Performance Bio-based Functional Coatings for Wood and Decorative Applications"




ProgrammeCBE-JU, Horizon Europe, BBI-2020-SO3-R5
CategoryResearch and Innovation Action (RIA)
StatusCompleted
Period2021 - 2024
Partners13
Budget€6.25m
LinksWebsite, Cordis, CBE-JU
PERFECOAT aims to develop paint and coating formulations with more than 25% biobased content with these divided into polysaccharides, lipids, and pigments. The project addresses three important markets for coatings: (i) high-volume, UV-curable clear coatings; (ii) waterborne trim paints for DIY; and (iii) waterborne wall paints.

The project is linking the industrial biotechnology sector to the paint and coating sector, as the biobased products developed in the project are microbially or biomass derived and modified using microbially derived enzymes. The project integrates chemical approaches with biochemical approaches to achieve the final superior quality product. The polysaccharides are both chemically and enzymatically modified separately or sequentially to obtain unique functionalities.

Celignis is involved in extracting xylan and chitin from terrestrial and aquatic biomass respectively and modifying them chemically and enzymatically to produce water based and UV-curable coatings. The modification involves: hydrolysing to obtain desired molecular weight polysaccharides; grafting chemical groups (chemical and enzymatic means) on to xylan, chitosan, and alginate to produce UV-curable binders; and grafting chemical groups to convert water soluble polysaccharides to water resistant forms.

Get more info...PERFECOAT



"The Production of Sustainable Diesel-Miscible-Biofuels from the Residues and Wastes of Europe and Latin America"




ProgrammeHorizon Europe, FP7.ENERGY.2008.3.2.1
CategoryResearch and Innovation Action (RIA)
StatusCompleted
Period2009 - 2013
Partners14
Budget€3.73m
LinksWebsite, Cordis
DIBANET, involved collaborative research between 13 partners from Europe and Latin America to develop biorefining technologies for the production of advanced biofuels. It targeted levulinic acid (a valuable platform chemical), from cellulose and hexose sugars, and of furfural (a valuable solvent and fuel precursor), from hemicellulose-dervied pentose sugars such as xylose. The process employed acid-hydrolysis, at elevated temperatures and pressures, to hydrolyse the polsyaccharides and produce the targeted molecules. The project also involved the development of a novel pre-treatment process, employing formic acid and hydrogen peroxide. The solid residues that were retained after hydrolysis were pyrolysed and gasified in order to produce energy.

Dan's primary scientific role in the project was in WP2 where he led efforts to generate algorithms for the rapid prediction of biomass composition based on the near infrared spectra of samples. Particular focuses for model development in DIBANET were the feedstocks Miscanthus (highly suitable for European climates) and sugarcane bagasse (a highly abundant fibrous residue in Brazil).

The development of the rapid biomass analysis models in DIBANET resulted in Dan spinning-out Celignis in 2014.

Get more info...DIBANET



"Enhanced Bioconversion of Agricultural Residues through Cascading Use"




ProgrammeCBE-JU, Horizon Europe, BBI.R10-2015
CategoryResearch and Innovation Action (RIA)
StatusCompleted
Period2016 - 2019
Partners11
Budget€3.77m
LinksWebsite, Cordis, CBE-JU, Twitter
BIOrescue evaluated ways to valorise the compost residues from mushroom production. Celignis's roles in BIOrescue included the following:

- Compositional analysis of feedstocks and process intermediates and outputs.
- The development of rapid analysis models, using near infrared (NIR) spectroscopy, for compositional analysis at several stages in the process scheme.
- The scoping of additional suitable undertuilised seasonal feedstocks for co-feeding with spent mushroom compost in a proposed biorefinery based on the BIOrescue technologies.
- The development of new algorithms, using software such as Octave and R-Studio and involving advanced intelligent regression techniques, to further improve the accuracy of Celignis's NIR models.




Get more info...BIOrescue



"UNique Refinery Approach to Valorise European Lignocellulosics"




ProgrammeCBE-JU, Horizon Europe, BBI.2017.R2
CategoryResearch and Innovation Action (RIA)
StatusCompleted
Period2018 - 2022
Partners13
Budget€3.72m
LinksWebsite, Cordis, CBE-JU, Twitter, LinkedIn, Facebook
The UNRAVEL project (UNique Refinery Approach to Valorise European Lignocellulosics) is funded with 3.6 million euros by the Biomass Based Industries Joint Undertaking and runs from June 2018 until May 2022.

The project addresses topic 2017.R2 of the 2017 BBI Work Programme - "Innovative technologies for the pre-treatment and serparation of lignocellulosic feedstock and complex composition streams into valuable fractions while maintaining key characteristics".

It focuses on the demonstration, at pilot-scale, of the FABIOLA pretreatment process for the production of (fine) chemicals, fuels and high-value lignin applications through an economically-feasible biorefinery concept for lignocellulosic biomass conversion.

Celignis is leader of Work Package 2 which concerns the detailed analysis of selected feedstocks, with a particular focus on extractives composition, and the optimisation of a pre-extraction process that could improve the yields and product qualities in subsequent pre-treatment. Studies showed that this pre-extraction is particularly effective in increasing the homogeneity of the feedstock composition and the purity of biorefinery products.

Celignis also worked on finding key chemicals within the extractives that may warrant separation and recovery and consider appropriate means for doing this. Our work will also involve developing a suite of NIR models for key inputs, intermediates, and outputs of the process.

Get more info...UNRAVEL



"Sequential Temperature-phased Enhanced Anaerobic digestion using Microbes and Enzymes"




ProgrammeOther
StatusCompleted
Period2019 - 2022
Partners1
Budget€0.10m

STEAME is aimed at developing a cost-effective technology for the efficient conversion of farm-animal waste and surplus grass silage to biogas. Key innovations are developed in the areas of: pre-treatment; thermophilic semi-dry anaerobic digestion; and microbial and enzyme applications. These are expected to improve the economics of farm-based AD systems thorough increased biogas yields; avoidance of slurry storage; and production of stable class-A biosolids as a value-added product for agricultural land applications.



Get more info...STEAME



"Enhance New Approaches in BioBased Local Innovation Networks for Growth"




ProgrammeHorizon Europe, RUR-10-2016-2017
CategoryCoordinating and Supporting Action (CSA)
StatusCompleted
Period2017 - 2020
Partners16
Budget€2.00m
LinksWebsite, Cordis, Twitter, LinkedIn, YouTube
The focus of the ENABLING project was on supporting the spreading of best practices and innovation in the provision (production, pre-processing) of biomass for the Bio-Based Industry (BBI).

Celignis played a key role in the project with regards to stressing the importance of biomass composition in terms of evaluating feedstock and technology suitability. We played a leading role in Work package 2 and were responsible for the development of the project's "Process Flows Platform", a web based tool that allowed stakeholders to view the regional availability of feedstocks in 16 different European countries and then to match these feedstocks with a number of suitable biomass valorisation technologies.

Additionally, Celignis contributed to the ENABLING "Best Practices Atlas" web-tool through the collation and review of a number of biomass valorisation strategies underway in Ireland.

Get more info...ENABLING



"Self-Assembling Plant-based Hydrogels Induced by Redox Enzymes"




ProgrammeHorizon Europe, INNOSUP-02-2019-2020
CategoryINNOSUP
StatusCompleted
Period2019 - 2021
Partners1
Budget€0.13m
LinkCordis
The SAPHIRE process was aimed at plant-based, environment-friendly, high-quality hydrogels for the food, cosmetic and pharmaceutical industries. Such eco-friendly high quality, 100% plant-based hydrogels were targeted to be produced in an eco-friendly manner and to command a green-premium product price for the product, especially in the target markets of food, and the cosmetic and medical industries.

In the eco-friendly SAPHIRE process, enzymes help in reducing the energy and chemicals demand in the fractionation of plant biomass to xylan, cellulosem, and lignin. They also help in the controlled deconstruction of plant biomass and thereafter in the ordered assembly of xylan and nanocellulose fractions to form hydrogels with lignin monomers as cross-linking agents.

Get more info...SAPHIRE



"Value Added Materials from Organic Waste Sugars"




ProgrammeCBE-JU, Horizon Europe, BBI.2018.SO2.D3
CategoryInnovation Action (IA)
StatusCompleted
Period2019 - 2023
Partners11
Budget€13.70m
LinksWebsite, Cordis, CBE-JU, Twitter
VAMOS is based on the Fiberight process for the valorisation of municipal solid waste to produce lactic acid. Celignis plays a key role in the project with regards to the analysis of the solid fractions at a number of stages in the process. Our initial work focuses on the development of rapid analysis models, using near infrared spectroscopy equipment located in our labs, that allow the composition of the material to be predicted based solely on the NIR spectra collected from it. This allows the analysis time to be reduced from weeks to seconds, an approach we have successfully demonstrated to date in other BBI projects (BIOrescue and UNRAVEL) at the RIA (up to TRL-5) level for both feedstocks and process outputs.

Excitingly, VAMOS gives Celignis the opportunity to demonstrate its NIR models at a higher TRL level (TRL-7). As part of this we will install similar NIR equipment within the demo plant (which is expected to be located in the UK) and set up customised software that will allow plant operators, with no technical expertise in NIR or chemometrics, to routinely analyse the inputs and outputs of the process.

Get more info...VAMOS



"Innovative Large-Scale Production of Affordable Clean Burning Solid Biofuel and Water in Southern Africa: Transforming Bush Encroachment from a Problem into a Secure and Sustainable Energy Source"




ProgrammeHorizon Europe, LC-GD-2-3-2020
CategoryInnovation Action (IA)
StatusCompleted
Period2021 - 2024
Partners15
Budget€11.73m
LinksWebsite, Cordis, Twitter, LinkedIn, Facebook
This project addresses the problems experienced with bush encroachment in a number of southern African countries by using this biomass as a feedstock for a steam torrefaction process, developed in SteamBio (an earlier EU-funded project). Their are two main outputs of this process, a solid material which has improved properties, with regards to its use as a clean-burning fuel, over the original biomass, and a liquid condensate containing volatile components removed from the biomass during torrefaction.

Celignis is an important analytical partner in the project, undertaking detailed compositional analyses of the feedstocks and process outputs as well as providing guidance and SOPs to the local partners for routine analyses (e.g. for proximate, ultimate, and calorific value analysis). Additionally, Celignis is the main partner responsible for the analysis of the liquid condensate fraction and for the evaluation of suitable applications and markets for it. This is expected to be a complex mixture of degradation products, particularly those coming from the extractives and hemciellulose fractions of the biomass. The profiling of this liquid stream will involve use of our extensive range of chromatography equipment, particularly our Agilent iFunnel 6550 QTOF-LC/MS device. Following this detailed analysis we will then consider which components within the liquid are of value and will consider applications for these (either in crude or refined forms) and will work on techniques for separation and purification.

Get more info...SteamBioAfrica



"Diversifying Revenue in Rural Africa through Circular, Sustainable and Replicable Bio-based Solutions and Business Models"




ProgrammeHorizon Europe, CE-SFS-36-2020
CategoryResearch and Innovation Action (RIA)
StatusCompleted
Period2021 - 2025
Partners25
Budget€9.00m
LinksWebsite, Cordis, Twitter, LinkedIn, YouTube, Facebook
BIO4Africa focuses on the demonstration of sustainable, circular solutions and business models, suitable for African countries, based on the valorisation of a variety of local feedstocks.

Celignis is an important partner in the project, having a key role early-on with regards to the compositional analysis and evaluation of a wide variety of different local feedstocks. These data allowed decisions to be made with regards to which feedstocks were suitable for which technologies leading to a subset of feedstocks being selected for processing. The project's technologies include: pyrolysis (for biochar production); hydrothermal carbonisation; and a green-biorefinery (the GRASSA process).

After matching feedstocks with technology, samples will be sent to the European technology providers where initial tests will determine how these feedstocks behave. Following these trials arrangements will be made for the equipment to be shipped to Africa where the technologies will be deployed at a number of locations, processing locally-available biomass. Celignis will also play an important role in the project at these stages, being responsible for the analysis of the outputs (e.g. biochar, HTC char, press-cake, etc.) of the various technologies.

Get more info...BIO4Africa



"ALGAL biorefinery of biogas digestate to high VAlue fuNctional IngredientS through circular approachEs"




ProgrammeHorizon Europe, H2020-EU.1.3.2
CategoryMarie Curie IF
StatusCompleted
Period2020 - 2022
Partners1
Budget€0.18m
LinkCordis
The ALGALVANISE project was designed to add an additional revenue stream to the biogas plants by producing high value products and reducing the disposal problems with the digestate. Digestate is rich in phosphates and nitrogen and also contains substantial amounts of organic content that is not converted to biomethane. The richness of digestate in nutrients and organic matter makes it a suitable feed for biotransformation (fungal, algal, or bacterial) to high value products.

Algal cultivation is favoured over fungal and bacterial systems for wastewater or digestate treatment due to the ability of algae to assimilate nutrients and produce high-value products including proteins, lipids and natural pigments.

In the integration of algal cultivation at an AD facility, a natural consortium of bacteria and algae can be established based on the composition of the digestate and environmental/process conditions. ALGALVANISE advanced the state-of-the art by developing a series of innovative solutions for separate applications in the biogas and algae industries as well as the best integrated solution for a biogas-algae biorefinery.

Get more info...ALGALVANISE





Go Back to Research Projects page.



...